Find the length of the curve y = 3/5x^5/3 - 3/4x^1/3 + 6 for 1 < = x < = 8. The length of the curve is . (Type an exact answer, using radicals as needed.)

Respuesta :

Answer:

[tex]\sqrt\frac{387}{20}[/tex]

Step-by-step explanation:

[tex]Arc Length =\int\limits^a_b {\sqrt{1+(\frac{dy}{dx})^2 } } \, dx[/tex]

[tex]y=\dfrac{3}{5}x^{\frac{5}{3}}- \dfrac{3}{4}x^{\frac{1}{3}}+6[/tex]

[tex]\frac{dy}{dx} =x^{\frac{2}{3}}-\dfrac{1}{4}x^{-\frac{2}{3}}[/tex]

[tex]1+(\frac{dy}{dx})^2 }=1+(x^{\frac{2}{3}}-\dfrac{1}{4}x^{-\frac{2}{3}})^2\\=1+(x^{\frac{4}{3}}-\dfrac{1}{2}+ \dfrac{1}{16}x^{-\frac{4}{3}})[/tex]

[tex]=\dfrac{1}{2}+x^{\frac{4}{3}}+ \dfrac{1}{16}x^{-\frac{4}{3}}[/tex]

For the Interval [tex]1\leq x\leq 8[/tex]

Length of the Curve [tex]=\int\limits^8_1 {\sqrt{\dfrac{1}{2}+x^{\frac{4}{3}}+ \dfrac{1}{16}x^{-\frac{4}{3}} } } \, dx\\[/tex]

Using T1-Calculator

[tex]=\sqrt\frac{387}{20}[/tex]