Answer:
[tex]\sqrt\frac{387}{20}[/tex]
Step-by-step explanation:
[tex]Arc Length =\int\limits^a_b {\sqrt{1+(\frac{dy}{dx})^2 } } \, dx[/tex]
[tex]y=\dfrac{3}{5}x^{\frac{5}{3}}- \dfrac{3}{4}x^{\frac{1}{3}}+6[/tex]
[tex]\frac{dy}{dx} =x^{\frac{2}{3}}-\dfrac{1}{4}x^{-\frac{2}{3}}[/tex]
[tex]1+(\frac{dy}{dx})^2 }=1+(x^{\frac{2}{3}}-\dfrac{1}{4}x^{-\frac{2}{3}})^2\\=1+(x^{\frac{4}{3}}-\dfrac{1}{2}+ \dfrac{1}{16}x^{-\frac{4}{3}})[/tex]
[tex]=\dfrac{1}{2}+x^{\frac{4}{3}}+ \dfrac{1}{16}x^{-\frac{4}{3}}[/tex]
For the Interval [tex]1\leq x\leq 8[/tex]
Length of the Curve [tex]=\int\limits^8_1 {\sqrt{\dfrac{1}{2}+x^{\frac{4}{3}}+ \dfrac{1}{16}x^{-\frac{4}{3}} } } \, dx\\[/tex]
Using T1-Calculator
[tex]=\sqrt\frac{387}{20}[/tex]