Respuesta :

Answer:

Perimeter of platter is 39.84 inch.

Area of platter is [tex]119.52\:inch^{2}[/tex]

Step-by-step explanation:

Apothem is the perpendicular line from center to the side of the octagon. Given that apothem is 6 inch that is AB=6 inch and [tex] m\angle 90^{\circ}[/tex] (Refer attachment).

Assume DB = BC = x.

Since  [tex] \angle DAC[/tex] is central angle, Therefore  

[tex] m\angle DAC=\dfrac{360}{8}[/tex]

[tex] m\angle DAC=45^{\circ}[/tex]

Since apothem AB bisects angle DAC. So,  

[tex]\angle BAC=\dfrac{ m\angle DAC }{2}[/tex]

[tex]\angle BAC=\dfrac{ 45 }{2}[/tex]

[tex]\angle BAC=22.5^{\circ}[/tex]

To find the value of BC, use trigonometry ratio for tan for [tex] \Delta ABC[/tex],

[tex] tan\:\theta=\dfrac{opposite\:side}{adjacent\:side}[/tex]

[tex] tan\left(22.5\right^{\circ})=\dfrac{BC}{AB}[/tex]

[tex] tan\left(22.5\right^{\circ})=\dfrac{x}{6}[/tex]

Solving for x multiply whole equation by 6.

[tex] tan\left(22.5\right^{\circ})=\dfrac{x}{6}[/tex]

[tex] 6\times tan\left(22.5\right^{\circ})=x[/tex]

[tex] x=2.49[/tex]

Now, DC = DB + BC

[tex]DC = x + x [/tex]

[tex]DC = 2 x [/tex]

[tex]DC = 4.98 [/tex]

Therefore, side of octagon is 4.98 inch .

Perimeter of octagon is,

[tex]Perimeter=number\:of\:sides\times length[/tex]

Since octagon has 8 sides, so number of side is 8

[tex]Perimeter=8\times 4.98[/tex]

[tex]Perimeter=39.84[/tex]

Therefore, perimeter of platter is 39.84 inch.

Area of octagon is,

[tex] Area\:of\:octagon=\dfrac{1}{2}\times apothem\times perimeter[/tex]

[tex] Area\:of\:octagon=\dfrac{1}{2}\times 6\times 39.84[/tex]

[tex] Area\:of\:octagon=119.52[/tex]

Therefore, area of platter is [tex]119.52\:inch^{2}[/tex]

Note: Values are calculated using two decimal places)

Ver imagen neha678