Step-by-step explanation:
Just remember that
[tex]e^{-x^9} < e^{-x}[/tex]
That is the most important part, therefore,
[tex]\int\limits_{0}^{\infty}{e^{-x^9}} \, dx < \int\limits_{0}^{\infty}{e^{-x}} \, dx\\[/tex]
Since
[tex]\int\limits_{0}^{\infty}{e^{-x}} \, dx = \lim\limits_{n \to \infty} -e^{-x} + e^{-1} = e^{-1}[/tex]
and the integral
[tex]\int\limits_{0}^{1} e^{-x^9} \, dx[/tex]
is an integral over a bounded interval and
[tex]\int\limits_{0}^{\infty} {e^{-x^9}} \, dx = \int\limits_{0}^{1} {e^{-x^9}} \, dx + \int\limits_{1}^{\infty} {e^{-x^9}} \, dx[/tex]
The integral
[tex]\int\limits_{0}^{\infty} {e^{-x^9}} \, dx[/tex]
converges.