A laboratory tested twelve chicken eggs and found that the mean amount of cholesterol was 185 milligrams with s = 17.6 milligrams. Construct a 95% confidence interval for the true mean cholesterol content of all such eggs.

Respuesta :

Answer:

95% confidence interval for the true mean cholesterol content of all such eggs is [173.82 , 196.18].

Step-by-step explanation:

We are given that a laboratory tested twelve chicken eggs and found that the mean amount of cholesterol was 185 milligrams with s = 17.6 milligrams.

Assuming the population has a normal distribution.

Firstly, the pivotal quantity for 95% confidence interval for the true mean is given by;

        P.Q. = [tex]\frac{\bar X - \mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]

where, [tex]\bar X[/tex] = sample mean amount of cholesterol = 185 milligrams

             s = sample standard deviation = 17.6 milligrams

             n = sample of chicken eggs = 12

             [tex]\mu[/tex] = true mean

Here for constructing 95% confidence interval we have used t statistics because we don't know about population standard deviation.

So, 95% confidence interval for the population​ mean, [tex]\mu[/tex] is ;

P(-2.201 < [tex]t_1_1[/tex] < 2.201) = 0.95  {As the critical value of t at 11 degree of

                                               freedom are -2.201 & 2.201 with P = 2.5%}

P(-2.201 < [tex]\frac{\bar X - \mu}{\frac{s}{\sqrt{n} } }[/tex] < 2.201) = 0.95

P( [tex]-2.201 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]{\bar X - \mu}[/tex] < [tex]2.201 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95

P( [tex]\bar X-2.201 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+2.201 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95

95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-2.201 \times {\frac{s}{\sqrt{n} } }[/tex] , [tex]\bar X+2.201 \times {\frac{s}{\sqrt{n} } }[/tex] ]

                                               = [ [tex]185-2.201 \times {\frac{17.6}{\sqrt{12} } }[/tex] , [tex]185+2.201 \times {\frac{17.6}{\sqrt{12} } }[/tex] ]

                                               = [173.82 , 196.18]

Therefore, 95% confidence interval for the true mean cholesterol content of all such eggs is [173.82 , 196.18].