Respuesta :

Answer:

[tex]\[\frac{y^{12}}{8 \times x^{18}}\][/tex]

Step-by-step explanation:

Given expression is [tex]\[(2x^{6}/y^{4})^{-3}\][/tex]

In order to simplify the expression, we need to evaluate the numerator and denominator values when a power of -3 is applied to them individually.

Computing the numerator:

[tex]\[(2x^{6})^{-3}\][/tex]

[tex]\[=(2^{-3} \times x^{6*(-3)})\][/tex]

[tex]\[=(\frac{1}{2^{3}} \times x^{-18})\][/tex]

Similarly the denominator:

[tex]\[(y^{4})^{-3}\][/tex]

[tex]\[=y^{4*(-3)}\][/tex]

[tex]\[=y^{-12}\][/tex]

So the overall simplified expression is:

[tex]\[\frac{(\frac{1}{2^{3}} \times x^{-18})}{y^{-12}}\][/tex]

[tex]\[=\frac{y^{12}}{8 \times x^{18}}\][/tex]