Nathan drew a right triangle with vertices A(x1, y1), B(x2, y2), and C(x3, y3). AC is the longest side in ΔABC. What must be true for this triangle?

Respuesta :

Answer:

For making this statement true we have to check Triangle Inequality theorem.

Step-by-step explanation:

Given that,

Triangle ΔABC having three vertices are A ([tex]x_{1} ,y_{1}[/tex]), B([tex]x_{2} ,y_{2}[/tex]), C ([tex]x_{3} ,y_{3}[/tex]) and AC is the longest side.

from the question,

Diagram of the given scenario is shown below,

According to Triangle Inequality theorem states that sum of any 2 sides of a triangle is always greater than third side.

Taking the ΔABC we have,

                                            [tex]AB + BC > AC[/tex]

                                            [tex]AB + AC > BC[/tex]

                                            [tex]BC+AC > AB[/tex]

This condition must be satisfied for drawing a triangle if any two side sum is lesser than third side it will not form a triangle.

 Hence,

For making this statement true we have to check Triangle Inequality theorem.                                          

Ver imagen sihanmintu