Respuesta :
Given that STU is a triangle located at S (2, 1), T (2, 3), and U (0, −1).
The triangle is then transformed using the rule [tex](x-4, y+3)[/tex] to form the image S'T'U'.
We need to determine new coordinates of S', T', and U'
Coordinates of S':
The coordinates of S' can be determined by substituting the coordinate (2,1) in the transformation rule [tex](x-4, y+3)[/tex]
Thus, we have;
[tex]S(x,y)\rightarrow (x-4, y+3)\rightarrow S'(x,y)[/tex]
Substituting the coordinate (2,1), we get;
[tex]S(2,1)\rightarrow (2-4, 1+3)\rightarrow S'(-2,4)[/tex]
Therefore, the coordinates of the point S' is (-2,4)
Coordinates of T':
The coordinates of T' can be determined by substituting the coordinate (2,3) in the transformation rule [tex](x-4, y+3)[/tex]
Thus, we have;
[tex]T(x,y)\rightarrow (x-4, y+3)\rightarrow T'(x,y)[/tex]
Substituting the coordinate (2,1), we get;
[tex]T(2,3)\rightarrow (2-4, 3+3)\rightarrow T'(-2,6)[/tex]
Therefore, the coordinates of the point T' is (-2,6)
Coordinates of U':
The coordinates of U' can be determined by substituting the coordinate (0,-1) in the transformation rule [tex](x-4, y+3)[/tex]
Thus, we have;
[tex]U(x,y)\rightarrow (x-4, y+3)\rightarrow U'(x,y)[/tex]
Substituting the coordinate (2,1), we get;
[tex]U(0,-1)\rightarrow (0-4, -1+3)\rightarrow U'(-4,2)[/tex]
Therefore, the coordinates of the point U' is (-4,2)
Hence, the coordinates of S'T'U' are (-2,4), (-2,6) and (-4,2)