A41.0m guy wire is attached to the top of a 32.8 m antenna and to a point on the ground. How far is the point on the ground from the base of antenna, and what angle does the guy wire make with the ground

Respuesta :

Answer:

Step-by-step explanation:

A right angle triangle is formed.

The length of the guy wire represents the hypotenuse of the right angle triangle.

The height of the antenna represents the opposite side of the right angle triangle.

The distance, h from base of the antenna to the point on the ground to which the antenna is attached represents the adjacent side of the triangle.

To determine h, we would apply Pythagoras theorem which is expressed as

Hypotenuse² = opposite side² + adjacent side²

Therefore,

41² = 32.8² + h²

1681 = 1075.84 + h²

h² = 1681 - 1075.84 = 605.16

h = √605.16

h = 24.6 m

To determine the angle θ that the wire makes with the ground, we would apply the the cosine trigonometric ratio.

Cos θ = adjacent side/hypotenuse. Therefore,

Cos θ = 24.6/41 = 0.6

θ = Cos^-1(0.6)

θ = 53.1°