contestada

A dielectric cube of side a, centered at the origin, carries a "frozen-in" polarization P = kr, where k is a constant. Find all the bound charges and check that they add up to zero.

Respuesta :

The total volume of bound charge is zero.

Explanation:

We have to the volume and surface bounded charge densities.

   ρb = - Δ . p = - Δ .k ([tex]x^{X}[/tex] +[tex]y^{Y}[/tex] +[tex]x^{Y}[/tex])

                      = - 3k

 On the top of the cube the surface charge density is

                     σb = p . z

                           = [tex]\frac{ka}{2}[/tex]

By symmetry this holds for all the other sides. The total bounded charge should be zero

        Qtot = (-3k)a³ + 6 . [tex]\frac{ka}{2}[/tex] . a² = 0

               σb = -3K σb = [tex]\frac{ka}{2}[/tex]

            Qtot = 0

Hence,  the total volume of bound charge is zero.