Respuesta :

Given:

[tex]\angle A=5 x-12^{\circ}[/tex]

[tex]\angle B=2 x+24^\circ[/tex]

To find:

The value of x and measure of angle B

Solution:

Alternate interior angle theorem:

If two parallel lines cut by a transversal, then the alternate interior angles are congruent.

⇒ m∠A = m∠B

[tex]\Rightarrow 5 x-12^{\circ}=2 x+24^{\circ}[/tex]

Add 12° on both sides.

[tex]\Rightarrow 5 x-12^{\circ}+12^{\circ}=2 x+24^{\circ}+12^{\circ}[/tex]

[tex]\Rightarrow 5 x=2 x+36^{\circ}[/tex]

Subtract 2x from both sides.

[tex]\Rightarrow 5 x-2x=2 x+36^{\circ}-2x[/tex]

[tex]\Rightarrow 3x=36^{\circ}[/tex]

Divide by 3 on both sides.

[tex]$\Rightarrow\frac{3x}{3} =\frac{ 36^{\circ}}{3}[/tex]

x = 12°

Substitute x = 12° in ∠B.

m∠B = 2x + 24°

        = 2(12°) + 24°

        = 24° + 24°

        = 48°

The measure of ∠B is 48°.