Respuesta :

znk

Answer:

A) UT = 42; WT = 21; ST = 42

[tex]\text{d) } m\widehat {XT} = 56^{\circ}; \text{e) } m\widehat {ST} = 112^{\circ}; \text{f) }m\widehat {US} = 136^{\circ}[/tex]

Step-by-step explanation:

a), b), and c)

YZ ⟂ ST, so SV = TV = 21

In ∆s ZVT and ZWT,  

∠ZVT = ∠ZWT; ZV = ZW; ZT is common.

∴ ∆ZVT ≅ ∆ZWT

∴ ∠ZTV = ∠ZTW

In ∆s SVZ and TVZ,

SV = TV; SZ = TZ; VZ is common

∴ ∆SVZ ≅ ∆TVZ

∴ ∠SZV = ∠TZV

By similar reasoning,

∆TWZ ≅ ∆UWZ

∴ ∠TZW = ∠UZW

So, the four angles marked with red dots are equal.

Also, SV = TV = TW = UW = 21

In ∆s STZ and UTZ,

SZ = UZ; ST =UT; TZ is common

∴ ∆STZ ≅ ∆UTZ

∴ ∠SZT = ∠UZT and  

ST = UT  = 42

[tex]\textbf{e) m} \mathbf{\widehat {ST}}\\m \widehat {ST} =m \widehat {UT } = 112^{\circ}[/tex]

[tex]\textbf{d) m} \mathbf{\widehat {XT}}\\m \widehat {XT} = \frac{1}{2} m \widehat {UT } = \frac{1}{2}(112^{\circ}) = \mathbf{56^{\circ}}[/tex]

[tex]\textbf{f) m} \mathbf{\widehat {US}}\\m\widehat {US} =360^{\circ} - 2\times 112^{\circ} = 360^{\circ} - 224^{\circ} = \mathbf{136^{\circ}}[/tex]

Ver imagen znk