Answer:
x = 8, y = 6
Step-by-step explanation:
Let positive integer = x
another = y
x = 2y-4
x^2+ y^2 = 100
(2y-4)^2 + y^2 = 100
4y^2 - 16 y + 16 + y^2 = 100
5y^2 - 16 y + 16 - 100 = 0
5y^2 - 16y - 84 = 0
(5y + 14) ( y - 6) = 0
5y = -14 or y = 6
positive so we can ingnore 5y = -14
y = 6 in x = 2y - 4,
x = 12-4
x= 8
so, y = 6
x = 8