Respuesta :
Step-by-step explanation:
We need to write the function that have two real number zeros by calculating the discriminant i.e. [tex]b^2-4ac[/tex].
We know that,
If D>0 the roots are real and unequal
If D= 0 roots are real and equal
If D< 0 roots are imaginary or not real and unequal
Function (1)
[tex]f(x)=x^2 + 6x + 8\\\\D=6^2-4\times 1\times 8\\\\D=4[/tex]
D>0 the roots are real and unequal
Function (2)
[tex]g(x)=x^2 + 4x + 8\\\\D=4^2-4\times 1\times 8\\\\D=-16[/tex]
D<0 the roots are real and unequal
Function (3)
[tex]h(x)=x^2 -12x+32\\\\D=(-12)^2-4\times 1\times 32\\\\D=16[/tex]
D>0 the roots are real and unequal
Function (4)
[tex]k(x)=x^2 +4x-1\\\\D=(4)^2-4\times 1\times (-1)\\\\D=20[/tex]
D>0 the roots are real and unequal
Function (5)
[tex]p(x)=5x^2 +5x+4\\\\D=(5)^2-4\times 5\times 4\\\\D=-55[/tex]
D<0 the roots are real and unequal
Function (6)
[tex]t(x)=x^2 -2x-15\\\\D=(-2)^2-4\times 1\times (-15)\\\\D=64[/tex]
D>0 the roots are real and unequal
(1),(3),(4) and (6) have two real number zeroes.