Answer:
[tex]k=0[/tex] and [tex]k=3[/tex].
Step-by-step explanation:
To this relation be a function, the horizontal coordinates can't be equal. So, let's find the value of [tex]k[/tex] that makes those coordinates equal.
[tex]k^{2}=3k\\ k^{2}-3k=0\\k(k-3)=0\\[/tex]
Using the null factor property, we have
[tex]k=0\\k-3=0 \implies k=3[/tex]
Therefore, the given relation is not a function when [tex]k=0[/tex] and [tex]k=3[/tex].