Respuesta :

Answer:

[tex]5cm^{3}[/tex]

Step-by-step explanation:

This problem bothers on the mensuration of solid shapes, cone an cylinder.

from the formula of cylinder and cone we can see that the volume of a cone is 3 times smaller than that of a cylinder

[tex]volume=\pi r^{2} h[/tex]....................cylinder

[tex]volume= \frac{1}{3} \pi r^{2}h[/tex].................cone

assuming all units in (cm)

Given data.

Volume of cylinder  =  [tex]15cm^{3}[/tex]

Diameter d=  [tex]2cm[/tex]

Radius r =   [tex]\frac{d}{2}[/tex][tex]= \frac{2}{2} = 1cm[/tex]

Height h=  ??

we know that the expression for the volume of a cylinder is

[tex]volume=\pi r^{2} h[/tex]

we can substitute our given data to find the height h

[tex]15= 3.142*1^{2}*h\\15= 3.142h[/tex]

divide both side by 3.142 we have

[tex]h= \frac{15}{3.142}\\ h= 4.77cm[/tex]

We can now use this height[tex]4.77cm[/tex] and radius [tex]1cm[/tex] to find the equivalent  volume of a cone.

the expression for the volume of a cone is

[tex]volume= \frac{1}{3} \pi r^{2}h[/tex]

substituting our data into the expression  we have

[tex]volume= \frac{3.142*1^{2*} 4.77}{3} \\volume= \frac{15}{3} \\voulume = 5cm^{3} \\[/tex]