Answer:
[tex]5cm^{3}[/tex]
Step-by-step explanation:
from the formula of cylinder and cone we can see that the volume of a cone is 3 times smaller than that of a cylinder
[tex]volume=\pi r^{2} h[/tex]....................cylinder
[tex]volume= \frac{1}{3} \pi r^{2}h[/tex].................cone
assuming all units in (cm)
Given data.
Volume of cylinder = [tex]15cm^{3}[/tex]
Diameter d= [tex]2cm[/tex]
Radius r = [tex]\frac{d}{2}[/tex][tex]= \frac{2}{2} = 1cm[/tex]
Height h= ??
we know that the expression for the volume of a cylinder is
[tex]volume=\pi r^{2} h[/tex]
we can substitute our given data to find the height h
[tex]15= 3.142*1^{2}*h\\15= 3.142h[/tex]
divide both side by 3.142 we have
[tex]h= \frac{15}{3.142}\\ h= 4.77cm[/tex]
We can now use this height[tex]4.77cm[/tex] and radius [tex]1cm[/tex] to find the equivalent volume of a cone.
the expression for the volume of a cone is
[tex]volume= \frac{1}{3} \pi r^{2}h[/tex]
substituting our data into the expression we have
[tex]volume= \frac{3.142*1^{2*} 4.77}{3} \\volume= \frac{15}{3} \\voulume = 5cm^{3} \\[/tex]