Respuesta :

Answer:

x = 3, y = 6

Step-by-step explanation:

In the figure attached,

If ΔADE and ΔABC are similar triangles, their corresponding sides will be in the same ratio.

By this property,

[tex]\frac{AB}{AD}=\frac{AC}{AE}=\frac{BC}{DE}[/tex]

[tex]\frac{AB}{AD}=\frac{AC}{AE}[/tex]

[tex]\frac{AD+BD}{AD}=\frac{AE+EC}{AE}[/tex]

[tex]\frac{3}{2}=\frac{x+1.5}{x}[/tex]

3x = 2x + 3

3x - 2x = 3

x = 3

Similarly, [tex]\frac{AB}{AD}=\frac{BC}{DE}[/tex]

[tex]\frac{3}{2}=\frac{y}{4}[/tex]

y = [tex]\frac{3\times 4}{2}[/tex]

y = 6