Respuesta :
Answer:
a) [tex] z = \frac{295.2-247}{62.2}=0.772[/tex]
And using the normal distribution table or excel we got:
[tex] P(Z>0.772) = 1-P(Z<0.772) = 1-0.77994= 0.22006[/tex]
b) [tex] z = \frac{295.5 -247}{\frac{62.2}{\sqrt{16}}}= 3.119[/tex]
And we can use the normal standard table or excel in order to find the probability and we got:
[tex] P(z>3.119) =1-P(Z<3.119)= 1- 0.999093=0.000907[/tex]
Step-by-step explanation:
For this case we know that the random variable of interest is normally distributed with the following parameters:
[tex] X \sim N (\mu = 247, \sigma =62.2)[/tex]
Part a
We want to find this probability:
[tex] P(X>295.2)[/tex]
And we can use the z score formula given by:
[tex] z = \frac{X-\mu}{\sigma}[/tex]
Replacing we got:
[tex] z = \frac{295.2-247}{62.2}=0.772[/tex]
And using the normal distribution table or excel we got:
[tex] P(Z>0.772) = 1-P(Z<0.772) = 1-0.77994= 0.22006[/tex]
Part b
We select a random sample of size n = 16 and we try to find this probability:
[tex] P(\bar X >295.2)[/tex]
And we can use the z score formula given by:
[tex] z = \frac{\bar X -\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
And replacing we got:
[tex] z = \frac{295.5 -247}{\frac{62.2}{\sqrt{16}}}= 3.119[/tex]
And we can use the normal standard table or excel in order to find the probability and we got:
[tex] P(z>3.119) =1-P(Z<3.119)= 1- 0.999093=0.000907[/tex]