Convert the line integral to an ordinary integral with respect to the parameter and evaluate it. ModifyingBelow Integral from nothing to nothing With Upper C (y minus z )ds∫C(y−z)ds​; C is the helix left angle 12 cosine t comma 12 sine t comma t right angle12cost,12sint,t​, for 0 less than or equals t less than or equals 2 pi0≤t≤2π The value of the ordinary integral is nothing.

Respuesta :

C is parameterized by

[tex]\vec r(t)=\langle x(t),y(t),z(t)\rangle=\left\langle12\cos t,12\sin t,t\right\rangle[/tex]

for 0 ≤ t ≤ 2π. In the integral, replace y and z as above, and the line element ds is

[tex]\mathrm ds=\sqrt{\left(\dfrac{\mathrm dx}{\mathrm dt}\right)^2+\left(\dfrac{\mathrm dy}{\mathrm dt}\right)^2+\left(\dfrac{\mathrm dz}{\mathrm dt}\right)^2}\,\mathrm dt=\sqrt{145}\,\mathrm dt[/tex]

So the integral is

[tex]\displaystyle\int_C(y-z)\,\mathrm ds=\sqrt{145}\int_0^{2\pi}(12\sin t-t)\,\mathrm dt[/tex]

sin(t) has period 2π, so that term contributes nothing to the integral, leaving us with

[tex]\displaystyle\int_C(y-z)\,\mathrm ds=-\sqrt{145}\int_0^{2\pi}t\,\mathrm dt=\boxed{-2\pi^2\sqrt{145}}[/tex]