C is parameterized by
[tex]\vec r(t)=\langle x(t),y(t),z(t)\rangle=\left\langle12\cos t,12\sin t,t\right\rangle[/tex]
for 0 ≤ t ≤ 2π. In the integral, replace y and z as above, and the line element ds is
[tex]\mathrm ds=\sqrt{\left(\dfrac{\mathrm dx}{\mathrm dt}\right)^2+\left(\dfrac{\mathrm dy}{\mathrm dt}\right)^2+\left(\dfrac{\mathrm dz}{\mathrm dt}\right)^2}\,\mathrm dt=\sqrt{145}\,\mathrm dt[/tex]
So the integral is
[tex]\displaystyle\int_C(y-z)\,\mathrm ds=\sqrt{145}\int_0^{2\pi}(12\sin t-t)\,\mathrm dt[/tex]
sin(t) has period 2π, so that term contributes nothing to the integral, leaving us with
[tex]\displaystyle\int_C(y-z)\,\mathrm ds=-\sqrt{145}\int_0^{2\pi}t\,\mathrm dt=\boxed{-2\pi^2\sqrt{145}}[/tex]