Answer:
Approximately [tex]0.20\; \rm L[/tex].
Explanation:
Convert the temperature of this gas to absolute temperature:
[tex]T = 25\; \rm ^\circ C \approx (25 + 273.15)\; \rm K = 298.15\; \rm K[/tex].
Let [tex]P[/tex] and [tex]V[/tex] represent the pressure and volume of this gas, respectively. Let [tex]n[/tex] represent the number of gas particles in this gas. Let [tex]R[/tex] represent the ideal gas constant. By the ideal gas law:
[tex]P \cdot V = n \cdot R \cdot T[/tex].
For this question:
Look up the ideal gas constant [tex]R[/tex] that takes [tex]\rm atm[/tex] as the unit for pressure:
[tex]R \approx 0.082057\; \rm L \cdot atm \cdot K^{-1}\cdot mol^{-1}[/tex].
This question is asking for [tex]V[/tex], the volume of this gas. Rearrange the ideal gas equation and solve for [tex]V[/tex]:
[tex]\begin{aligned} V &= \frac{n \cdot R \cdot T}{P} \\ &\approx \frac{0.00831\; \rm mol\times 0.0082057\; \rm L \cdot atm \cdot K^{-1}\cdot mol^{-1}\cdot 298.15\; \rm K}{1.01\; \rm atm} \\ &\approx 0.0020\; \rm L\end{aligned}[/tex].