Answer:
x = pi/2 + 2 pi n x = pi + 2 pi n where n is an integer
x = 5pi /3 + 2 pi n
Step-by-step explanation:
8 cos^2 x + 4 cos x-4 = 0
Divide by 4
2 cos^2 x + cos x-1 = 0
Let u = cos x
2 u^2 +u -1 =0
Factor
(2u -1) ( u+1) = 0
Using the zero product property
2u-1 =0 u+1 =0
u = 1/2 u = -1
Substitute cosx for u
cos x = 1/2 cos x = -1
Take the inverse cos on each side
cos ^-1(cos x) = cos ^-1(1/2) cos ^-1( cos x) =cos ^-1( -1)
x = pi/2 + 2 pi n x = pi + 2 pi n where n is an integer
x = 5pi /3 + 2 pi n