Evaluate 8 − m n + p 2 8− n m ​ +p 2 8, minus, start fraction, m, divided by, n, end fraction, plus, p, squared when m = 8 m=8m, equals, 8, n = 2 n=2n, equals, 2, p = 7 p=7p, equals, 7.

Respuesta :

Answer:

[tex]8 - \frac{m}{n} + p^2 = 53[/tex]

Step-by-step explanation:

Given

[tex]8 - \frac{m}{n} + p^2[/tex]

[tex]m = 8[/tex]

[tex]n = 2[/tex]

[tex]p = 7[/tex]

Required

Evaluate

To solve this;

we simply substitute the values of m, n and p in the given expression

In other words; we replace m, n and p with their actual values;

[tex]8 - \frac{m}{n} + p^2[/tex]

becomes

[tex]8 - \frac{m}{n} + p^2 = 8 - \frac{8}{2} + 7^2[/tex]

Solve fraction

[tex]8 - \frac{m}{n} + p^2 = 8 - 4 + 7^2[/tex]

Take square of 7

[tex]8 - \frac{m}{n} + p^2 = 8 - 4 + 49[/tex]

Add result

[tex]8 - \frac{m}{n} + p^2 = 53[/tex]

The expression has been evaluated and the result of [tex]8 - \frac{m}{n} + p^2[/tex] is 53, provided that m = 8, n = 2 and p = 7