Answer:
[tex]8 - \frac{m}{n} + p^2 = 53[/tex]
Step-by-step explanation:
Given
[tex]8 - \frac{m}{n} + p^2[/tex]
[tex]m = 8[/tex]
[tex]n = 2[/tex]
[tex]p = 7[/tex]
Required
Evaluate
To solve this;
we simply substitute the values of m, n and p in the given expression
In other words; we replace m, n and p with their actual values;
[tex]8 - \frac{m}{n} + p^2[/tex]
becomes
[tex]8 - \frac{m}{n} + p^2 = 8 - \frac{8}{2} + 7^2[/tex]
Solve fraction
[tex]8 - \frac{m}{n} + p^2 = 8 - 4 + 7^2[/tex]
Take square of 7
[tex]8 - \frac{m}{n} + p^2 = 8 - 4 + 49[/tex]
Add result
[tex]8 - \frac{m}{n} + p^2 = 53[/tex]
The expression has been evaluated and the result of [tex]8 - \frac{m}{n} + p^2[/tex] is 53, provided that m = 8, n = 2 and p = 7