A point is chosen at random inside a triangle with vertices at (0, 0), (0, 8), and (8, 0). The continuous random variable ???? denotes the x-coordinate of that point.

a) Find the probability that ???? is less than 5.

b) Find the cumulative distribution function (i.e. P(???? ≤ x) ).

c) Find the probability density function.

d) Find the average value of X.

Respuesta :

Assuming all points in the triangle [tex]T[/tex] are uniformly distributed, we have the joint density

[tex]f_{X,Y}(x,y)=\begin{cases}\frac1A&\text{for }(x,y)\in T\\0&\text{otherwise}\end{cases}[/tex]

where [tex]A=\frac{8^2}2=32[/tex] is the area of the triangle [tex]T[/tex].

(a)

[tex]P(X<5)=\displaystyle\iint_{T^*}f_{X,Y}(x,y)\,\mathrm dy\,\mathrm dx[/tex]

(where [tex]T^*[/tex] is the portion of [tex]T[/tex] for which [tex]x[/tex] is between 0 and 5)

[tex]P(X<5)=\displaystyle\frac1{32}\int_0^5\int_0^{8-x}\mathrm dy\,\mathrm dx[/tex]

[tex]P(X<5)=\displaystyle\frac1{32}\int_0^5(8-x)\,\mathrm dx[/tex]

[tex]P(X<5)=\dfrac1{32}\cdot\dfrac{55}2=\boxed{\dfrac{55}{64}}[/tex]

(b) Generalizing the previous result, we have

[tex]P(X\le x^*)=\displaystyle\iint_{T^*}f_{X,Y}(x,y)\,\mathrm dy\,\mathrm dx[/tex]

(this time with [tex]T^*[/tex] being the portion of [tex]T[/tex] where [tex]0\le x\le x^*[/tex] for some [tex]x^*[/tex] between 0 and 8)

[tex]P(X\le x^*)=\displaystyle\frac1{32}\int_0^{x^*}\int_0^{8-x}\mathrm dy\,\mathrm dx[/tex]

[tex]P(X\le x^*)=\displaystyle\frac1{32}\int_0^{x^*}(8-x)\,\mathrm dx[/tex]

[tex]P(X\le x^*)=\displaystyle\frac1{32}\left(8x^*-\frac{(x^*)^2}2\right)[/tex]

That is, the CDF of [tex]X[/tex] is

[tex]P(X\le x)=\begin{cases}\frac{8x-\frac{x^2}2}{32}&\text{for }0\le x\le8\\0&\text{otherwise}\end{cases}[/tex]

or

[tex]\boxed{P(X\le x)=\begin{cases}\frac{16x-x^2}{64}&\text{for }0\le x\le8\\0&\text{otherwise}\end{cases}}[/tex]

(c) Obtain the PDF by differentiating the CDF:

[tex]f_X(x)=\dfrac{\mathrm d}{\mathrm dx}P(X\le x)[/tex]

[tex]\boxed{f_X(x)=\begin{cases}\frac{8-x}{32}&\text{for }0<x<8\\0&\text{otherwise}\end{cases}}[/tex]

(d) Compute the expectation of [tex]X[/tex]:

[tex]E[X]=\displaystyle\int_0^8xf_X(x)\,\mathrm dx[/tex]

[tex]E[X]=\displaystyle\frac1{32}\int_0^8x(8-x)\,\mathrm dx=\boxed{\frac83}[/tex]