Respuesta :
Answer:
[tex]1 \times 10^{10}[/tex] more pieces of mail were handled in 1995 than in 2010.
Step-by-step explanation:
We are given that in 1995, the USPS approximated that they handled [tex]1.8 \times 10^{11}[/tex] pieces of mail and in 2010, the USPS reported that they handled [tex]1.7 \times 10^{11}[/tex] pieces.
To find how many more pieces of mail were handled in 1995 than in 2010, we do subtraction of the pieces of mail that were handled in both the years.
Pieces of mail handled in 1995 = [tex]1.8 \times 10^{11}[/tex]
Pieces of mail handled in 2010 = [tex]1.7 \times 10^{11}[/tex]
As it is clear that more pieces of mail were handled in 1995.
So, Pieces of mail handled in 1995 - Pieces of mail handled in 2010 = [tex](1.8 \times 10^{11}) -(1.7 \times 10^{11})[/tex]
= [tex]10^{11} \times (1.8 -1.7)[/tex]
= [tex]10^{11} \times 0.1[/tex] = [tex]1 \times 10^{10}[/tex]
Hence, [tex]1 \times 10^{10}[/tex] more pieces of mail were handled in 1995 than in 2010.