Respuesta :
Answer:
a) 5.83 cm
b) 34.4 deg
Step-by-step explanation:
a)
AC is the hypotenuse of a right triangle with legs measuring 3 cm and 5 cm.
c^2 = a^2 + b^2
c^2 = 3^2 + 5^2
c^2 = 9 + 25
c^2 = 34
c = sqrt(34) cm = 5.83 cm
b)
Triangle ACD is a right triangle with right angle DAC.
AD = 4 cm
AC = 5.83 cm
tan <ACD = opp/adj
tan <ACD = AD/AC
tan <ACD = 4/5.83
m<ACD = tan^-1 (0.68599)
m<ACD = 34.4 deg
The side length AC is 5.83 cm and angle ACD is 34.5 degrees
(a) Length AC
To do this, we make use of the following Pythagoras theorem in triangle ABC
[tex]\mathbf{AC^2 = AB^2 + BC^2}[/tex]
So, we have:
[tex]\mathbf{AC^2 = 3^2 + 5^2}[/tex]
[tex]\mathbf{AC^2 = 9 + 25}[/tex]
[tex]\mathbf{AC^2 = 34}[/tex]
Take square roots
[tex]\mathbf{AC = 5.83}[/tex]
(b) Angle ACD
To do this, we make use of the following tangent ratio
[tex]\mathbf{tan(C) = \frac{AD}{AC}}[/tex]
So, we have:
[tex]\mathbf{tan(C) = \frac{4}{5.83}}[/tex]
[tex]\mathbf{tan(C) = 0.6861}[/tex]
Take arc tan of both sides
[tex]\mathbf{C= 34.5}[/tex]
Hence, side length AC is 5.83 cm and angle ACD is 34.5 degrees
Read more about cuboids at:
https://brainly.com/question/19810528