Respuesta :

Answer:

The value of  annuity is  [tex]P_v = \$ 7929.9[/tex]

Step-by-step explanation:

From the question we are told that

    The periodic payment is  [tex]P = \$ 250[/tex]

     The  interest rate  is   [tex]r = 5\% = 0.05[/tex]

     Frequency at which it occurs in a year is  n = 4 (quarterly )

      The number of years is  [tex]t = 10 \ years[/tex]

The  value of the annuity is mathematically represented as

             [tex]P_v = P * [1 - (1 + \frac{r}{n} )^{-t * n} ] * [\frac{(1 + \frac{r}{n} )}{ \frac{r}{n} } ][/tex] (reference EDUCBA website)

 substituting values

             [tex]P_v = 250 * [1 - (1 + \frac{0.05}{4} )^{-10 * 4} ] * [\frac{(1 + \frac{0.05}{4} )}{ \frac{0.08}{4} } ][/tex]

             [tex]P_v = 250 * [1 - (1.0125 )^{-40} ] * [\frac{(1.0125 )}{0.0125} ][/tex]

             [tex]P_v = 250 * [0.3916 ] * [\frac{(1.0125)}{0.0125} ][/tex]

            [tex]P_v = \$ 7929.9[/tex]