Respuesta :

Answer:  9c²

Step-by-step explanation:

To find the Greatest Common Factor of 207c³ and 108c², first factor them down to their primes and see what they have in common.

                207c³                     108c²

                 ∧   ∧                        ∧  ∧

             9·23  c·c·c              9·12   c·c

            ∧                            ∧  ∧

           3·3                         3·3 3·4

                                                  ∧

                                                 2·2

                   

207c³: 3·3·23  c·c·c

108c²:  2·2·3·3·3·4 c·c

GCF = 3·3 c·c

        = 9c²

The GCF of 207c^3 and 108c² is 9c²

Given the expressions [tex]207c^3 \ and \ 108c^2[/tex]

We are to find the GCF of both terms

First, we need to get the factors as shown::

207c³ = 9 * 23 * c² * c

108c² =  9 * 12 * c²

From the factors, we can see that 9 and c² are common to both terms:

The GCF of 207c^3 and 108c² is 9c²

Learn more here: https://brainly.com/question/21612147