A pool ball moving 1.83 m/s strikes an identical ball at rest. Afterward, the first ball moves 1.15 m/s at a 23.3 degrees angle. What is the y-component of the velocity of the second ball?

Respuesta :

Answer:

 v_{1fy} = - 0.4549 m / s

Explanation:

This is an exercise of conservation of the momentum, for this we must define a system formed by the two balls, so that the forces during the collision have internal and the momentum is conserved

initial. Before the crash

      p₀ = m v₁₀

final. After the crash

      [tex]p_{f}[/tex] = m [tex]v_{1f}[/tex] + m v_{2f}

Recall that velocities are a vector so it has x and y components

       p₀ = p_{f}

we write this equation for each axis

X axis

       m v₁₀ = m v_{1fx} + m v_{2fx}

       

Y Axis  

       0 = -m v_{1fy} + m v_{2fy}

the exercise tells us the initial velocity v₁₀ = 1.83 m / s, the final velocity v_{2f} = 1.15, let's use trigonometry to find its components

      sin 23.3 = v_{2fy} / v_{2f}

      cos 23.3 = v_{2fx} / v_{2f}

      v_{2fy} = v_{2f} sin 23.3

      v_{2fx} = v_{2f} cos 23.3

we substitute in the momentum conservation equation

       m v₁₀ = m v_{1f} cos θ + m v_{2f} cos 23.3

       0 = - m v_{1f} sin θ + m v_{2f} sin 23.3

      1.83 = v_{1f} cos θ + 1.15 cos 23.3

       0 = - v_{1f} sin θ + 1.15 sin 23.3

      1.83 = v_{1f} cos θ + 1.0562

        0 = - v_{1f} sin θ + 0.4549

     v_{1f} sin θ = 0.4549

     v_{1f}  cos θ = -0.7738

we divide these two equations

      tan θ = - 0.5878

      θ = tan-1 (-0.5878)

       θ = -30.45º

we substitute in one of the two and find the final velocity of the incident ball

        v_{1f} cos (-30.45) = - 0.7738

        v_{1f} = -0.7738 / cos 30.45

        v_{1f} = -0.8976 m / s

the component and this speed is

       v_{1fy} = v1f sin θ

       v_{1fy} = 0.8976 sin (30.45)

       v_{1fy} = - 0.4549 m / s

Answer:

v_{1fy} = - 0.4549 m / s

Explanation:

correct