Respuesta :
Answer:
Kindly check explanation
Step-by-step explanation:
Given the following functions :
sin^4 (x) = f(g(x)) where f(x) = and g(x) =
Sin⁴(x) = sin(x)⁴
g(x) = sin(x),
f(x) = f(g(x)) = f(sin(x)⁴) = x⁴
2.) sin(sin(x)) = f(g(x)) where f(x) = , and g(x) =
g(x) = sin(x) ; sinx = x
g(x) = sin(x)
f(x) = f(g(x)) = sin(x) ; sin(x) = x
f(x) = f(g(x)) = f(sin(x))
f(x) = sin(x)
3. sin x^4 = f(g(x)) where f (x) = , and g(x) = .
Here,
g(x) = x⁴
f(x) = f(g(x)) = sin(g(x)) = sin x
f(x) = sinx
The functions are illustrations of composite functions, where multiple functions are combined in one.
(1) sin^4 (x) = f(g(x))
Rewrite the above function as:
[tex]f(g(x)) = \sin^4(x)[/tex]
So, we have:
[tex]f(g(x)) = (\sin(x))^4[/tex]
From the above equation, we have:
[tex]g(x) = \sin(x)[/tex]
So, we have:
[tex]f(g(x)) = (g(x))^4[/tex]
Substitute x for g(x)
[tex]f(x) = x^4[/tex]
Hence, the functions are: [tex]f(x) = x^4[/tex] and [tex]g(x) = \sin(x)[/tex]
2.) sin(sin(x)) = f(g(x))
Rewrite the above function as:
[tex]f(g(x)) = \sin(\sin(x))[/tex]
From the above equation, we have:
[tex]g(x) = \sin(x)[/tex]
So, we have:
[tex]f(g(x)) = \sin(g(x))[/tex]
Substitute x for g(x)
[tex]f(x) = \sin(x)[/tex]
Hence, the functions are: [tex]f(x) = \sin(x)[/tex] and [tex]g(x) = \sin(x)[/tex]
3. sin x^4 = f(g(x))
Rewrite the above function as:
[tex]f(g(x)) = \sin(x^4)[/tex]
From the above equation, we have:
[tex]g(x) = x^4[/tex]
So, we have:
[tex]f(g(x)) = \sin(g(x))[/tex]
Substitute x for g(x)
[tex]f(x) = \sin(x)[/tex]
Hence, the functions are: [tex]f(x) = \sin(x)[/tex] and [tex]g(x) = x^4[/tex]
Read more about composite functions at:
https://brainly.com/question/10687170