Answer:
[tex] \boxed{ \bold{ \huge{ \boxed{ \sf{72}}}}}[/tex]
Step-by-step explanation:
Given data : 68 , 69 , 71 , 71 , 71 , 73 , 74 , 75 , 75 , 78
N ( total number of observation ) = 10
Finding the position of median
[tex] \boxed{ \sf{median = { (\frac{n + 1}{2} )}^{th \: item} }}[/tex]
[tex] \dashrightarrow{ \sf{median = { (\frac{10 + 1}{2} )}^{th \: item}}} [/tex]
[tex] \dashrightarrow{ \sf{median = {( \frac{11}{2}) }^{th \: item}} }[/tex]
[tex] \dashrightarrow{ \sf{ median = {5.5}^{th \: item}}} [/tex]
[tex] \sf{ {5.5}^{th} }[/tex] item is the average of 5 th and 6 th items.
Now, Finding the median
[tex] \dashrightarrow{ \sf{median = \frac{ {5}^{th}item + {6}^{th} item}{2} }}[/tex]
[tex] \dashrightarrow{ \sf{ \frac{71 + 73}{2} }}[/tex]
[tex] \dashrightarrow{ \sf{ \frac{144}{2} }}[/tex]
[tex] \dashrightarrow{ \sf{72}}[/tex]
Hope I helped!
Best regards! :D