Answer:
0.1360 M C₆H₅OHCOOH and 0.1360 M C₆H₅OHCOOK,
Ka = 1.05x 10⁻³ .
Explanation:
The first mixture
0.160 M C₆H₅OHCOOH and 0.160 M C₆H₅OHCOONa,
Ka = 1.05x 10⁻³ .
The second mixture
0.0892 M H₂NCH₂COOH and 0.0892 M H₂NCH₂COOK,
Ka = 4.5 x 10⁻³ .
The third mixture
.0725 M H₂NCH₂COOH and 0.0725 M H₂NCH₂COONa,
Ka = 4.5 x 10⁻³
fourth mixture
0.1360 M C₆H₅OHCOOH and 0.1360 M C₆H₅OHCOOK,
Ka = 1.05x 10⁻³ .
In all the mixtures the ratio of acid and its salt are same and equal to one so this ratio will not determine their relative buffering capacity .
Now we know that weak acid has more buffering capacity so mixture having acid of less Ka will have more buffering capacity .
Ka is less if
Ka = 1.05 x 10⁻³ .
Dilute acids have greater buffering capacity
So ultimate answer is
0.1360 M C₆H₅OHCOOH and 0.1360 M C₆H₅OHCOOK,
Ka = 1.05x 10⁻³ .