Answer:
[tex] \boxed{ \bold{ \boxed{ \sf{8 {x}^{2} + 2x - 27}}}}[/tex]
Step-by-step explanation:
[tex] \sf{(4 {x}^{2} - 2x + 28) + (4 {x}^{2} + 4x - 55)}[/tex]
When there is a ( + ) in front of an parentheses in an expression, there is no need to change the sign of each term in the expression. That means , the expression remains the same. Just, remove the unnecessary parentheses
[tex] \dashrightarrow{ \sf{4 {x}^{2} - 2x + 28 + 4 {x}^{2} + 4x - 55}}[/tex]
Collect like terms and simplify
[tex] \dashrightarrow{ \sf{4 {x}^{2} + 4 {x}^{2} - 2x + 4x + 28 - 55}}[/tex]
[tex] \dashrightarrow{ \sf{8 {x}^{2} + 2x + 28 - 55}}[/tex]
The negative and positive integers are always subtracted but possess the sign of the bigger integer.
[tex] \dashrightarrow{ \sf{8 {x}^{2} + 2x - 27}}[/tex]
Hope I helped!
Best regards! :D