Respuesta :

Space

Answer:

f'(x) = 2[3tan²(x)sec²(x) - 10csc⁴(x)cot(x)]

Step-by-step explanation:

f' of tan(x) = sec²(x)

f' of csc(x) = -csc(x)cot(x)

General Power Rule: uⁿ = xuⁿ⁻¹ · u'

Step 1: Write equation

2tan³(x) + 5csc⁴(x)

Step 2: Rewrite

2(tan(x))³ + 5(csc(x))⁴

Step 3: Find derivative

d/dx  2(tan(x))³ + 5(csc(x))⁴

  • General Power Rule: 2 · 3(tan(x))² · sec²(x) + 5 · 4(csc(x))³ · -csc(x)cot(x)
  • Multiply: 6(tan(x))²sec²(x) - 20(csc(x))³csc(x)cot(x)
  • Simplify: 6tan²(x)sec²(x) - 20csc⁴(x)cot(x)
  • Factor: 2[3tan²(x)sec²(x) - 10csc⁴(x)cot(x)]