Proving Parallel Lines with Alternate Exterior Angles
Try
Given: 21 22
Prove; plla
Angles Lines Statements Reasons
21
22
23
р
Statements
Reasons
3
9
2
Assemble the proof by dragging tiles to
the Statements and Reasons columns

Proving Parallel Lines with Alternate Exterior Angles Try Given 21 22 Prove plla Angles Lines Statements Reasons 21 22 23 р Statements Reasons 3 9 2 Assemble th class=

Respuesta :

Answer:

∠1  ≅ ∠2  [tex]{}[/tex]and ∠1  ≅ ∠3 also  ∠3 ≅ ∠2, therefore;

Line p is parallel to line q    using corresponding angles postulate                

Step-by-step explanation:

The given information are;

Given ∠1 ≅ ∠2

Prove p ║ q;

Statement [tex]{}[/tex]                                               Reason

∠1  is congruent to ∠2  [tex]{}[/tex]                                Given

∠1  is congruent to ∠3  [tex]{}[/tex]                                Alternate angles are congruent

∠3  is congruent to ∠2  [tex]{}[/tex]                               Transitive property

∠3  and ∠2 are corresponding angles  [tex]{}[/tex]      Angles on the same side of a transversal

Line p is parallel to line q   [tex]{}[/tex]                          Corresponding angles postulate.

Based on the converse of corresponding angles theorem, the statements and reasons that prove that p║q are given below.

What is the Converse of Corresponding Angles Theorem?

The converse of corresponding angles theorem states that, if two corresponding angles that are formed by a transversal and two lines are congruent, then the two lines are parallel lines.

Using the converse of corresponding angles theorem, we can prove that p║q with the following statements and reasons:

Statement 1: ∠1 ≅ ∠2

Reason 1: given

Statement 2: ∠1 and ∠3 are vertical angles

Reason 2: Def. of vertical angles

Statement 3: ∠1 ≅ ∠3

Reason 3: Vertical angles theorem

Statement 4: ∠3 ≅ ∠2

Reason 4: Transitive property

Statement 5: P || q

Reason 5: Converse of corresponding angles theorem

Learn more about converse of corresponding angles theorem on:

https://brainly.com/question/7066290

#SPJ5