An automobile company wants to determine the average amount of time it takes a machine to assemble a car. A sample of 40 times yielded an average time of 23.92 minutes, with a sample standard deviation of 6.72 minutes. Assuming normality of assembly times, provide a 98% confidence interval for the mean assembly time. Use Z_{a/2}Z a/2 ​ = 2.33 and round your answer to three decimal places.

Respuesta :

Answer:

A 98% confidence interval for the mean assembly time is [21.34, 26.49] .

Step-by-step explanation:

We are given that a sample of 40 times yielded an average time of 23.92 minutes, with a sample standard deviation of 6.72 minutes.

Firstly, the pivotal quantity for finding the confidence interval for the population mean is given by;

                               P.Q. =  [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex]  ~ [tex]t_n_-_1[/tex]

where, [tex]\bar X[/tex] = sample average time = 23.92 minutes

             s = sample standard deviation = 6.72 minutes

             n = sample of times = 40

             [tex]\mu[/tex] = population mean assembly time

Here for constructing a 98% confidence interval we have used a One-sample t-test statistics because we don't know about population standard deviation.

So, a 98% confidence interval for the population mean, [tex]\mu[/tex] is;

P(-2.426 < [tex]t_3_9[/tex] < 2.426) = 0.98  {As the critical value of z at 1%  level

                                               of significance are -2.426 & 2.426}  

P(-2.426 < [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] < 2.426) = 0.98

P( [tex]-2.426 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]{\bar X-\mu}[/tex] < [tex]2.426 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.98

P( [tex]\bar X-2.426 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+2.426 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.98

98% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-2.426 \times {\frac{s}{\sqrt{n} } }[/tex] , [tex]\bar X+2.426 \times {\frac{s}{\sqrt{n} } }[/tex] ]

                                     = [ [tex]23.92-2.426 \times {\frac{6.72}{\sqrt{40} } }[/tex] , [tex]23.92+2.426 \times {\frac{6.72}{\sqrt{40} } }[/tex] ]  

                                    = [21.34, 26.49]

Therefore, a 98% confidence interval for the mean assembly time is [21.34, 26.49] .