The perimeter of a triangular garden is 900cm and its sides are in the ratio 3 : 5 : 4. Using Heron’s formula, find the area of the triangular garden?

Respuesta :

Answer:

The area of the triangular garden is 33750 cm²

Step-by-step explanation:

Let us use Heron's Formula for the area of a triangle

[tex]A=\sqrt{p(p-a)(p-b)(p-c)}[/tex], where

  • a, b, and c are the lengths of the three sides of the triangle
  • [tex]p=\frac{a+b+c}{2}[/tex]

∵ The perimeter of a triangular garden is 900 cm

∴ The sum of the lengths of its three sides = 900 cm

∵  Its sides are in the ratio 3 : 5 : 4

→ Let us use the ratio method to find the length of its sides

→  S1  :  S2  :  S3  :  perimeter

→  3    :  5    :  4    :  12 ⇒ (3 + 5 + 4)

→  a    :  b    :  c    :  900

→ By using cross multiplication

∵ a × 12 = 3 × 900

∴ 12a = 2700

→ Divide both sides by 12

a = 225 cm

∵ b × 12 = 5 × 900

∴ 12b = 4500

→ Divide both sides by 12

b = 375 cm

∵ c × 12 = 4 × 900

∴ 12c = 3600

→ Divide both sides by 12

c = 300 cm

Now let us use Heron’s formula, to find the area of the triangular garden

∵ [tex]p=\frac{a+b+c}{2}[/tex]

∵ a = 225, b = 375, c = 300

∴ [tex]p=\frac{225+375+300}{2}=\frac{900}{2}[/tex]

p = 450

∵ [tex]A=\sqrt{450(450-225)(450-375)(450-300)}[/tex]

A = 33750 cm²

The area of the triangular garden is 33750 cm²