Respuesta :
Answer:
x = 23
y = 7
z = 11
Step-by-step explanation:
From ΔPRS,
(13y - 1)° + 28° + m∠S = 180°
m∠S = 180° - (13y + 27)°
m∠S = (153 - 13y)°
Since, ΔPRS ≅ ΔCFH,
m∠R = m∠F
(13y - 1)° = 90°
13y = 91
y = 7
m∠H ≅ m∠S
(6z - 4)° = (153 - 13y)
6z = 153 - 13y + 4
6z = 157 - 13y
6z = 157 - 13(7) [Since, y = 7]
6z = 66
z = 11
PS ≅ CH
(2x - 7) = 39
2x = 46
x = 23
Congruent triangles have equal corresponding sides and angle measures
The values of x, y and z are 23, 7 and 11
Because triangle PRS is congruent to triangle CFH, then we have the following congruence statements:
[tex]\angle P \cong \angle C[/tex]
[tex]\angle R \cong \angle F[/tex]
[tex]\angle S \cong \angle H[/tex]
The above highlights mean that:
[tex]\angle R \cong \angle F[/tex]
[tex]13y - 1 =90[/tex]
Add 1 to both sides
[tex]13y =91[/tex]
Divide both sides by 13
[tex]y =7[/tex]
Also, we have:
[tex]\angle S \cong \angle H[/tex]
[tex]90 - 28 = 6z - 4[/tex]
Add 4 to both sides
[tex]66 = 6z[/tex]
Divide both sides by 6
[tex]11 = z[/tex]
Rewrite as:
[tex]z = 11[/tex]
Also, we have:
[tex]PS \cong CH[/tex]
This gives
[tex]2x - 7 \cong 39[/tex]
Add 7 to both sides
[tex]2x = 46[/tex]
Divide both sides by 2
[tex]x = 23[/tex]
Hence, the values of x, y and z are 23, 7 and 11
Read more about congruent triangles at:
https://brainly.com/question/13705338