A person's center of mass is very near the hips, at the top of the legs. Model a person as a particle of mass mm at the top of a leg of length LL.Find an expression for the person's maximum walking speed vmaxvmax.

Respuesta :

Answer:

[tex]\mathbf{v_{max} = \sqrt{gL}}[/tex]

Explanation:

Considering an object that moving about in a circular path,  the equation for such centripetal force can be computed as:

[tex]\mathbf {F = \dfrac{mv^2}{2}}[/tex]

The model for the person can be seen in the diagram attached below.

So, along the horizontal axis, the net force that is exerted on the person is:

[tex]mg cos \theta = \dfrac{mv^2}{L}[/tex]

Dividing both sides by "m"; we have :

[tex]g cos \theta = \dfrac{v^2}{L}[/tex]

Making "v" the subject of the formula: we have:

[tex]v^2 = g Lcos \theta[/tex]

[tex]v=\sqrt{ gL cos \theta[/tex]

So, when [tex]\theta[/tex] = 0; the velocity is maximum

[tex]v_{max} = \sqrt{gL \ cos \theta}[/tex]

[tex]v_{max} = \sqrt{gL \ cos (0)}[/tex]

[tex]v_{max} = \sqrt{gL \times 1}[/tex]

[tex]\mathbf{v_{max} = \sqrt{gL}}[/tex]

Hence; the maximum walking speed for the person  is [tex]\mathbf{v_{max} = \sqrt{gL}}[/tex]

Ver imagen ajeigbeibraheem

Otras preguntas