Respuesta :

Answer:

Third option:

Step-by-step explanation:

Graph of functions

The graph shown in the image corresponds to a curved line passing through points (0,2) and (4,4).

Option 1:

[tex]y=\sqrt{x+2}[/tex]

Substituting x=0:

[tex]y=\sqrt{0+2}=\sqrt{2}[/tex]

The point is not (0,2), thus the function is incorrect.

Option 2:

y=x+2

This function corresponds to a straight line with slope 1 and y-intercept 2.

The graph is a curved line, thus the function is incorrect.

Option 3:

[tex]y=\sqrt{x}+2[/tex]

Substituting x=0:

[tex]y=\sqrt{0}+2[/tex]

y=0+2=2

Now test the point x=4:

[tex]y=\sqrt{4}+2[/tex]

y=2+2=4

The point (4,4) also corresponds to the function on the graph. This proof is not conclusive, but since the other options do not match, this is the correct option.

Option 4:

[tex]y=\sqrt{x}-2[/tex]

Substituting x=0:

[tex]y=\sqrt{0}-2[/tex]

y=-2

The point should be (0,2) and not (0,-2). Incorrect function