Respuesta :

Answer:

The length of the legs is 8.64cm and 14.64cm respectively

Step-by-step explanation:

I've added an attachment to aid my explanation.

At different intervals, I'll be making reference to it.

Given

[tex]AB = 17[/tex]

[tex]PAMC = 32[/tex]

[tex]PBMC = 25[/tex]

From the attachment, we have:

[tex]y + z = AB[/tex]

Since, M is the Midpoint

[tex]y = z = \½AB[/tex]

Substitute 17 for AB

[tex]y = z = \½ * 17[/tex]

[tex]y = z = 8.5[/tex]

Also, from the attachment

[tex]v + x + z = PAMC[/tex]

[tex]v + x + y = 32[/tex]

Substitute 8.5 for y

[tex]v + x + 8.5 = 32[/tex]

[tex]v + x = 32 - 8.5[/tex]

[tex]v + x = 23.5[/tex] --------- (1)

Also, from the attachment

[tex]v + w + z = 25[/tex]

Substitute 8.5 for z

[tex]v + w + 8.5 = 25[/tex]

[tex]v + w = 25 - 8.5[/tex]

[tex]v + w = 17.5[/tex] ----------- (2)

Subtract (2) from (1)

[tex]v - v + x - w = 23.5 - 17.5[/tex]

[tex]x - w = 6[/tex]

Make x the subject

[tex]x = 6 + w[/tex]

Apply Pythagoras Theorem:

We have that:

[tex]AB^2 = AC^2 + BC^2[/tex]

The above can be replaced with

[tex]17^2 = x^2 + w^2[/tex] (see attachment)

[tex]289 = x^2 + w^2[/tex]

Substitute 6 + w for x

[tex]289 = (6 + w)^2 + w^2[/tex]

[tex]289 = 36 + 12w + w^2 + w^2[/tex]

[tex]289 - 36 = 12w + 2w^2[/tex]

[tex]253 = 12w + 2w^2[/tex]

Reorder

[tex]2w^2 + 12w - 253 = 0[/tex]

Solve using quadratic equation:

[tex]w = \frac{-b \± \sqrt{b^2 - 4ac}}{2a}[/tex]

Where

[tex]a = 2[/tex]

[tex]b = 12[/tex]

[tex]c = -253[/tex]

[tex]w = \frac{-12 \± \sqrt{12^2 - 4 * 2 * -253}}{2 * 2}[/tex]

[tex]w = \frac{-12 \± \sqrt{144 + 2024}}{4}[/tex]

[tex]w = \frac{-12 \± \sqrt{2168}}{4}[/tex]

[tex]w = \frac{-12 \± 46.56}{4}[/tex]

Split:

[tex]w = \frac{-12 + 46.56}{4}[/tex] or [tex]w = \frac{-12 - 46.56}{4}[/tex]

[tex]w = \frac{34.56}{4}[/tex] or [tex]w = \frac{-58.56}{4}[/tex]

[tex]w = 8.64[/tex] or [tex]w = -14.64[/tex]

But length can't be negative

So:

[tex]w = 8.64[/tex]

Recall that: [tex]x = 6 + w[/tex]

[tex]x = 6 + 8.64[/tex]

[tex]x = 14.64[/tex]

Hence, the length of the legs is 8.64cm and 14.64cm respectively

Ver imagen MrRoyal