The mean hourly pay of an American Airlines flight attendant is normally distributed with a mean of $29.81 per hour and a standard deviation of $9.31 per hour. What is the probability that the hourly pay of a randomly selected flight attendant:


a. Is between the mean and $35.00 per hour? (Round intermediate calculations to 2 decimal places and final answer to 4 decimal places.)




b. Is more than $35.00 per hour? (Round intermediate calculations to 2 decimal places and final answer to 4 decimal places.)




c. Is less than $20.00 per hour? (Round intermediate calculations to 2 decimal places and final answer to 4 decimal places.)

Respuesta :

Answer:

a

[tex]P(29.81 < X < 35) = 0.21141[/tex]

b

[tex]P( X > 35) =0.28859[/tex]

c

 [tex]P( X < 20) =0.14601[/tex]    

Step-by-step explanation:

From the question we are told that

    The mean is  [tex]\mu = \$29.81[/tex]

    The standard deviation is [tex]\sigma = \$9.31[/tex]

Generally the probability that the hourly pay of a randomly selected flight attendant  Is between the mean and $35.00 per hour is mathematically represented as

      [tex]P(29.81 < X < 35) = P( \frac{ 29.81 - 29.81 }{9.31} < \frac{x - \mu }{\sigma} < \frac{ 35 - 29.81 }{9.31} )[/tex]

[tex]\frac{X -\mu}{\sigma }  =  Z (The  \ standardized \  value\  of  \ X )[/tex]

     [tex]P(29.81 < X < 35) = P( 0 < Z < 0.5575 )[/tex]

=>   [tex]P(29.81 < X < 35) = P( Z < 0.5575) - P( Z < 0)[/tex]

From the z table  the area under the normal curve to the left corresponding to  0 and  0.5575   is  

   [tex]P( Z < 0) =0.5[/tex]

and

   [tex]P( Z < 0.5575) = 0.71141[/tex]

=>   [tex]P(29.81 < X < 35) = 0.71141 - 0.5[/tex]

=>   [tex]P(29.81 < X < 35) = 0.21141[/tex]

Generally the probability that the hourly pay of a randomly selected flight attendant  Is more than $35.00 per hour is mathematically represented as

   [tex]P(X > 35) = P( \frac{x - \mu }{\sigma} > \frac{ 35 - 29.81 }{9.31} )[/tex]

   [tex]P( X > 35) = P( Z > 0.5575 )[/tex]

From the z table  the area under the normal curve to the right  corresponding to 0.5575   is  

    [tex]P( Z > 0.5575 ) = 0.28859[/tex]

=>  [tex]P( X > 35) =0.28859[/tex]

Generally the probability that the hourly pay of a randomly selected flight attendant Is less than $20.00 per hour is mathematically represented as

   [tex]P(X <20 ) = P( \frac{x - \mu }{\sigma} < \frac{20 - 29.81 }{9.31} )[/tex]

   [tex]P( X < 20) = P( Z < -1.0537 )[/tex]

From the z table  the area under the normal curve to the right  corresponding to -1.0537  is  

    [tex]P( Z < -1.0537 ) = 0.14601[/tex]

=>  [tex]P( X < 20) =0.14601[/tex]