Respuesta :
Answer:
[tex] \frac{ {11}^{4} }{ {11}^{11} } < \frac{1}{ {11}^{ - 4} } < {11}^{5} . {11}^{2} < ( {11}^{ - 3} )^{ - 3} [/tex]
Step-by-step explanation:
[tex]A) \frac{ {11}^{4} }{ {11}^{11} } = {11}^{4 - 11} = {11}^{ - 7} \\ \\ B)\frac{1}{ {11}^{ - 4} } = {11}^{4} \\ \\C) ( {11}^{ - 3} )^{ - 3} = {11}^{ - 3( - 3)} = {11}^{9} \\ \\ D){11}^{5} . {11}^{2} = {11}^{5 + 2} = {11}^{7} \\ \\ \because \: {11}^{ - 7} < {11}^{4} < {11}^{7} < {11}^{9} \\ \\ \therefore \: \frac{ {11}^{4} }{ {11}^{11} } < \frac{1}{ {11}^{ - 4} } < {11}^{5} . {11}^{2} < ( {11}^{ - 3} )^{ - 3} [/tex]