Answer:
Explanation:
From the information given:
We can properly determine the distance where the fish appear in the air viewing it from in front of the bowl by using the formula:
[tex]\dfrac{n_i}{d_o}+\dfrac{n_2}{d_1}= \dfrac{n_2-n_1}{r}[/tex]
where;
[tex]n_1[/tex] = refractive index in the air; = 1.33 &
[tex]n_2[/tex] = refractive index in water. = 1
[tex]\dfrac{n_2}{d_i}= \dfrac{n_2-n_1}{r}-\dfrac{n_1}{d_o}[/tex]
[tex]\dfrac{1}{d_i}= \dfrac{1-1.33}{-21 \ cm}-\dfrac{1.33}{4.7\ cm}[/tex]
[tex]\dfrac{1}{d_i}= - 0.26726 \ cm[/tex]
[tex]d_i =\dfrac{1}{ - 0.26726 \ cm}[/tex]
[tex]\mathbf{d_i }[/tex] = - 3.74 cm
2)
To determine where the fish appear to be when it is 38.9 cm from the front surface of the bowl by using the formula:
[tex]\dfrac{n_2}{d_i}= \dfrac{n_2-n_1}{r}-\dfrac{n_1}{d_o}[/tex]
[tex]\dfrac{1}{d_i}= \dfrac{1-1.33}{-21 \ cm}-\dfrac{1.33}{38.9\ cm}[/tex]
[tex]\dfrac{1}{d_i}=- 0.0184759 \ cm[/tex]
[tex]d_i = \dfrac{1}{- 0.0184759 \ cm}[/tex]
[tex]\mathbf{d_i = }[/tex] -54.12 cm