Answer:
[tex] \frac{2}{5}x = \frac{7}{20}x + \frac{1}{4} [/tex]
[tex] -\frac{3}{4} = -\frac{1}{20}x - \frac{1}{2} [/tex]
Step-by-step explanation:
Given,
[tex] -\frac{3}{4} + \frac{2}{5}x = \frac{7}{20}x - \frac{1}{2} [/tex]
There are two possible ways to start solving for the value of x.
✔️The first is, add both sides by ¾
[tex] -\frac{3}{4} + \frac{2}{5}x + \frac{3}{4} = \frac{7}{20}x - \frac{1}{2} + \frac{3}{4} [/tex]
[tex] \frac{2}{5}x = \frac{7}{20}x + \frac{1}{4} [/tex] (-½ + ¾ = ¼)
This equation represents the first possible way to begin with.
✔️The second is subtract both sides by ⅖x
[tex] -\frac{3}{4} + \frac{2}{5}x - \frac{2}{5}x = \frac{7}{20}x - \frac{1}{2} - \frac{2}{5} [/tex]
[tex] -\frac{3}{4} = \frac{7}{20}x - \frac{2}{5}x - \frac{1}{2} [/tex]
[tex] -\frac{3}{4} = \frac{7 - 8}{20}x - \frac{1}{2} [/tex]
[tex] -\frac{3}{4} = -\frac{1}{20}x - \frac{1}{2} [/tex]
This equation represents another way to start.