Respuesta :

Approximate solutions are the estimate values of an equation

The approximate solution of the equation is x = 0.45

How to determine the approximate solution

The equation is given as:

[tex]x^3 + 2x- 1= 0[/tex]

The iteration is given as:

[tex]x_{n+1} = \frac{1}{x_n^2 + 2}[/tex]

To start with, we have:

[tex]x_1 = 1[/tex]

So, we have:

[tex]x_2 = \frac{1}{1^2 + 2} = \frac 13 =0.33333333[/tex]

The next iteration is:

[tex]x_3 = \frac{1}{0.33333333^2 + 2} = 0.47368421102[/tex]

The next iteration is:

[tex]x_4 = \frac{1}{0.47368421102^2 + 2} = 0.4495641344[/tex]

The next iteration is:

[tex]x_5 = \frac{1}{0.4495641344^2 + 2} = 0.45411035264[/tex]

The next iteration is:

[tex]x_6 = \frac{1}{0.45411035264^2 + 2} = 0.45326473189[/tex]

Notice that:

x5 and x6 have the same value to 2 decimal places.

i.e. [tex]x_5 \approx x_6 = 0.45[/tex]

Hence, the approximate solution of the equation is x = 0.45

Read more about approximate solutions at:

https://brainly.com/question/10171109