Respuesta :
Answer:
D ( x -2i sqrt(2)) ( x+ 2i sqrt(2))
Step-by-step explanation:
x^2 + 8
We want to factor so rewrite as squares
x^2 + (2sqrt(2))^2
Rewrite with a subtraction sign i^2 = -1
x^2 - (2*i*sqrt(2))^2
This is the difference of squares
a^2 - b^2 = ( a-b) (a+b)
( x -2i sqrt(2)) ( x+ 2i sqrt(2))
Answer:
Option D is the correct answer
Step-by-step explanation:
[tex](x + 2 \sqrt{2} i)(x - 2 \sqrt{2} i) \\ \\ = ( {x})^{2} - {(2 \sqrt{2}i )}^{2} \\ \\ = {x}^{2} - {2}^{2}. {( \sqrt{2} )}^{2} {i}^{2} \\ \\ = {x}^{2} - 4.2( - 1) \\( \because \: {i}^{2} = - 1) \\ \\ = {x}^{2} + 8[/tex]