Respuesta :

Answer:

The two column proof is presented as follows;

Statement           [tex]{}[/tex]                 Reason

1. ∠V ≅ ∠Y         [tex]{}[/tex]                  Given

2. [tex]\overline {WZ}[/tex] bisects ∠VWY    [tex]{}[/tex]     Given

3. ∠VWZ = ∠YWZ       [tex]{}[/tex]         Definition of bisection of angle

4. [tex]\overline {WZ}[/tex] ≅ [tex]\overline {ZW}[/tex]          [tex]{}[/tex]             Reflexive property

5. ΔWVZ ≅ ΔWYZ   [tex]{}[/tex]            Angle-Angle-Side congruency postulate

6. [tex]\overline {VZ}[/tex] ≅ [tex]\overline {YZ}[/tex]   [tex]{}[/tex]                      CPCTC postulate

Step-by-step explanation:

The two column proof is presented as follows;

Statement           [tex]{}[/tex]                 Reason

1. ∠V ≅ ∠Y         [tex]{}[/tex]                  Given

2. [tex]\overline {WZ}[/tex] bisects ∠VWY    [tex]{}[/tex]     Given

3. Given that ∠VWY is bisected by [tex]\overline {WZ}[/tex], therefore ∠VWY is split into two equal angles, ∠VWZ and ∠YWZ, from which we have ∠VWZ = ∠YWZ     [tex]{}[/tex]         by the definition of bisection of angle ∠WXY by [tex]\overline{WZ}[/tex]

4. By reflexive property, a line is congruent to itself, therefore, [tex]\overline {WZ}[/tex] ≅ [tex]\overline {ZW}[/tex]  

5. Given that two adjacent angles and a side adjacent to the two angles in ΔWVZ are congruent to the corresponding two adjacent angles and adjacent side in ΔWYZ,  ΔWVZ is congruent to ΔWYZ by the Angle-Angle-Side (AAS) congruency postulate

6. Given that ΔWVZ ≅ ΔWYZ, and side [tex]\overline {VZ}[/tex] of ΔWVZ is the corresponding side to side [tex]\overline {YZ}[/tex] of ΔWYZ, therefore, [tex]\overline {VZ}[/tex] is congruent to [tex]\overline {YZ}[/tex] by the Congruent Parts of Congruent Triangle are Congruent (CPCTC) postulate.