Answer:
[tex]\displaystyle F(v) = \frac{9}{5}(v-273)+32[/tex]
Step-by-step explanation:
The temperature T(d) in degrees Fahrenheit in terms of Celsius d is given by:
[tex]\displaystyle T(d)=\frac{9}{5}d+32[/tex]
And the temperature C(v) in degrees Celsius in terms of Kelvin v is given by:
[tex]C(v)=v-273[/tex]
We want the formula for the temperature F(v) in degrees Fahrenheit in terms of the Kelvin temperature.
So, we can use a composition of functions. Since T(d) outputs the temperature in Fahrenheit and C(v) inputs the temperature in Kelvin, T(C(v)) will be the temperature in Fahrenheit given the temperature in Kelvin. So:
[tex]\displaystyle T(C(v))=\frac{9}{5}(C(v)))+32[/tex]
Substitute:
[tex]\displaystyle T(C(v)) = F(v) = \frac{9}{5}(v-273)+32[/tex]
Therefore:
[tex]\displaystyle F(v) = \frac{9}{5}(v-273)+32[/tex]