Answer:
a. G = 4590.0
b. G = 4550.0
Step-by-step explanation:
Given that: G = [tex]\sqrt{\frac{m}{t^{2} } }[/tex]
a. m = 6.1 x [tex]10^{-5}[/tex] and t = 1.7 x [tex]10^{-6}[/tex]
Thus,
G = [tex]\sqrt{\frac{6.1*10^{-5} }{(1.7*10^{-6}) ^{2} } }[/tex]
= [tex]\sqrt{\frac{6.1*10^{-5}}{2.89*10^{-12} } }[/tex]
= [tex]\sqrt{21107266.44}[/tex]
G = 4594.26452
G = 4590.0
b. m = 6.1 x [tex]10^{-5}[/tex] + ( 6.1 x [tex]10^{-5}[/tex] x 0.08)
= 6.588 x [tex]10^{-5}[/tex]
t = 1.7 x [tex]10^{-6}[/tex] + (1.7 x [tex]10^{-6}[/tex] x 0.05)
= 1.785 x [tex]10^{-6}[/tex]
So that,
G = [tex]\sqrt{\frac{6.588*10^{-5} }{(1.785*10^{-6}) ^{2} } }[/tex]
= [tex]\sqrt{\frac{6.588*10^{-5} }{3.186*10^{-12} } }[/tex]
= [tex]\sqrt{20676505.9}[/tex]
G = 4547.1426
G = 4550.0