Respuesta :
Answer:
312.5 t⁴
Step-by-step explanation:
25*t⁻⁴ = (5²) / t⁴ (1)
5⁻³*10*t⁻⁸ = 5⁻³*2*5¹ / t⁸ (2)
(1)/(2): ((5²) / t⁴) / ((5⁻²*2) / t⁸) = 5⁴ * t⁴ / 2 = 625 t⁴ / 2 = 312.5 t⁴
Answer:
[tex] \frac{625 {t}^{4} }{2} [/tex] or 312.5t⁴
Step-by-step explanation:
to understand this
you need to know about:
- law of exponent
- PEMDAS
given:
- [tex] \frac{25 \times {t}^{ - 4} }{ {5}^{ - 3} \times 10 \times {t}^{ - 8} } [/tex]
tips and formulas:
- [tex]x ^{a} \times {x}^{b } = {x}^{a + b} [/tex]
- [tex] \frac{ {x}^{a} }{ {x}^{ b } } = {x}^{a - b} [/tex]
let's solve:
[tex] step - 1 : define\\ \frac{25 \times {t}^{ - 4} }{ {5}^{ - 3} \times 10 \times {t}^{ - 8} } [/tex]
[tex] step - 2: simplify\\ \frac{ {5}^{2} \times {t}^{ - 4} }{ {5}^{ - 3} \times 2.5\times {t}^{ - 8} } \\ \\ \frac{ {5}^{2} }{ {5}^{ - 3 + 1} } \times \frac{ {t}^{ - 4} }{ {t}^{ - 8} } \times \frac{1}{2} \\ {5}^{2 + 2} \times {t}^{ - 4 - ( - 8)} \times \frac{1}{2 } \\ 625 \times {t}^{4} \times \frac{1}{2} \\ \therefore \frac{625 {t}^{4} }{2} [/tex]