Respuesta :
The question is incomplete. The complete question is :
Calculate the wavelength of the electromagnetic radiation required to excite an electron from the ground state to the level with n = 6 in a one-dimensional box 34.0 pm in length.
Solution :
In an one dimensional box, energy of a particle is given by :
[tex]$E=\frac{n^2h^2}{8ma^2}$[/tex]
Here, h = Planck's constant
n = level of energy
= 6
m = mass of particle
a = box length
For n = 6, the energy associated is :
[tex]$\Delta E = E_6 - E_1 $[/tex]
[tex]$\Delta E = \left( \frac{n_6^2h_2}{8ma^2}\right) - \left( \frac{n_1^2h_2}{8ma^2}\right) $[/tex]
[tex]$=\frac{h^2(n_6^2 - n_1^2)}{8ma^2}$[/tex]
We know that,
[tex]$E = \frac{hc}{\lambda} $[/tex]
Here, λ = wavelength
h = Plank's constant
c = velocity of light
So the wavelength,
[tex]$= \frac{hc}{E}$[/tex]
[tex]$=\frac{hc}{\frac{h^2(n_6^2 - n_1^2)}{8ma^2}}$[/tex]
[tex]$=\frac{8ma^2c}{h(n_6^2 - n_1^2)}$[/tex]
[tex]$=\frac{8 \times 9.109 \times 10^{-31}(0.34 \times 10^{-10})^2 (3 \times 10^8)}{6.626 \times 10^{-34} \times (36-1)}$[/tex]
[tex]$= \frac{ 8 \times 9.109 \times 0.34 \times 0.34 \times 3 \times 10^{-43}}{6.626 \times 35 \times 10^{-34}}$[/tex]
[tex]$=\frac{25.27 \times 10^{-43}}{231.91 \times 10^{-34}}$[/tex]
[tex]$= 0.108 \times 10^{-9}$[/tex] m
= 108 pm